1,541 research outputs found

    Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations

    Full text link
    Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered—that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon–phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain—i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3′-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2− = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4−)] as a representative of the ANPs. Why is PMEApp4− a better substrate for polymerases than ATP4−? There are three reasons: (i) PMEA2− with its anti-like conformation (like AMP2−) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,β)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(β,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4−), the M(α)-M(β,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH)− stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure—i.e., acts as the “enzyme” by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2− to the [Cu2(ATP)]2(OH)− solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH)− species, in which AMP2− takes over the structuring role, while the other “half” of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH)− is even a more reactive species than Cu3(ATP)(AMP)(OH)−. – The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp−), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3− complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights

    Shaping RNA Structures with Metal Ions and Metal Ion Complexes

    Get PDF
    The research in our laboratory focuses on the role of metal ions and their complexes in structure formation and folding of nucleic acids. Large catalytic RNAs, like group II introns and some riboswitches, as well as shorter RNAs and DNAs containing modified nucleotides for the assembly of nanodevices are examined. Abundant metal ions like Mg2+ or natural metabolites like coenzyme B12 are in the center of interest, but also other metal ions, complexes thereof and B12 derivatives are applied with the aim to understand the largely unknown and manifold non-covalent interactions with nucleic acids. We apply a multitude of techniques, including potentiometric pH titrations, NMR spectroscopy, X-ray crystallography, gel electrophoresis and single molecule FRET experiments. Here we briefly summarize each of our research topics emphasizing the interaction of coenzyme B12 and its derivatives with the btuB riboswitch of E. coli. This highly conserved sequence, found in the 5'-untranslated region (5'-UTR) of the btuB mRNA, is involved in the regulation of the btuB protein expression. After a summary on the historical discovery of such riboswitches and their mechanism of action, we shortly focus on our own contributions to understand the structural equilibrium, high affinity and selectivity of the interaction between this specific RNA sequence and the largest and most complex cellular metabolite, coenzyme B12

    The Bioinorganic Periodic Table

    Get PDF
    Life depends on metals. While carbon, in terms of abundance and versatility, is considered THE element of life, the vast variety and diversity of the chemistry taking place in living organisms could not be achieved without metal ions. More than twenty metals are found in the human body, most of them being essential, some beneficial, and for others it is still unknown what role they might fulfil in a living cell. Here we give a short introduction into the bioinorganic world of the periodic table, providing just a few examples of key metals for life and aiming to give a flavour to gain further insights into this exciting field of inorganic chemistry at the intersection to the life sciences

    Tb3+-Cleavage Assays Reveal Specific Mg2+ Binding Sites Necessary to Pre-fold the btuB Riboswitch for AdoCbl Binding

    Full text link
    Riboswitches are RNA elements that bind specific metabolites in order to regulate the gene expression involved in controlling the cellular concentration of the respective molecule or ion. Ligand recognition is mostly facilitated by Mg2+ mediated pre-organization of the riboswitch to an active tertiary fold. To predict these specific Mg2+ induced tertiary interactions of the btuB riboswitch from E. coli, we here report Mg2+ binding pockets in its aptameric part in both, the ligand-free and the ligand-bound form. An ensemble of weak and strong metal ion binding sites distributed over the entire aptamer was detected by terbium(III) cleavage assays, Tb3+ being an established Mg2+ mimic. Interestingly many of the Mn+ (n = 2 or 3) binding sites involve conserved bases within the class of coenzyme B12-binding riboswitches. Comparison with the published crystal structure of the coenzyme B12 riboswitch of S. thermophilum aided in identifying a common set of Mn+ binding sites that might be crucial for tertiary interactions involved in the organization of the aptamer. Our results suggest that Mn+ binding at strategic locations of the btuB riboswitch indeed facilitates the assembly of the binding pocket needed for ligand recognition. Binding of the specific ligand, coenzyme B12 (AdoCbl), to the btuB aptamer does however not lead to drastic alterations of these Mn+ binding cores, indicating the lack of a major rearrangement within the three-dimensional structure of the RNA. This finding is strengthened by Tb3+ mediated footprints of the riboswitch's structure in its ligand-free and ligand-bound state indicating that AdoCbl indeed induces local changes rather than a global structural rearrangement

    MINAS—a database of Metal Ions in Nucleic AcidS

    Get PDF
    Correctly folded into the respective native 3D structure, RNA and DNA are responsible for uncountable key functions in any viable organism. In order to exert their function, metal ion cofactors are closely involved in folding, structure formation and, e.g. in ribozymes, also the catalytic mechanism. The database MINAS, Metal Ions in Nucleic AcidS (http://www.minas.uzh.ch), compiles the detailed information on innersphere, outersphere and larger coordination environment of >70 000 metal ions of 36 elements found in >2000 structures of nucleic acids contained today in the PDB and NDB. MINAS is updated monthly with new structures and offers a multitude of search functions, e.g. the kind of metal ion, metal-ligand distance, innersphere and outersphere ligands defined by element or functional group, residue, experimental method, as well as PDB entry-related information. The results of each search can be saved individually for later use with so-called miniPDB files containing the respective metal ion together with the coordination environment within a 15 Å radius. MINAS thus offers a unique way to explore the coordination geometries and ligands of metal ions together with the respective binding pockets in nucleic acid

    Mimicking the in vivo Environment – The Effect of Crowding on RNA and Biomacromolecular Folding and Activity

    Get PDF
    In vitro studies on macromolecules, like proteins and nucleic acids, are mostly carried out in highly diluted systems where the molecules are studied under artificial conditions. These experimental conditions are optimized for both the system under investigation and the technique used. However, these conditions often do not reflect the in vivo situation and are therefore inappropriate for a reliable prediction of the native behavior of the molecules and their interactions under in vivo conditions. The intracellular environment is packed with cosolutes (macromolecules, metabolites, etc.) that create 'macromolecular crowding'. The addition of natural or synthetic macromolecules to the sample solution enables crowding to be mimicked. In this surrounding most of the studied biomolecules show a more compact structure, an increased activity, and a decrease of salt requirement for structure formation and function. Herein, we refer to a collection of examples for proteins and nucleic acids and their interactions in crowding environments and present in detail the effect of cosolutes on RNA folding and activity using a group II intron ribozyme as an example

    Metal Ion Complexes of Nuceloside Phosphorothioates Reflecting the Ambivalent Properties of Lead (II)

    Get PDF
    This Perspective outlines the coordinating properties of lead( II ), to some extent in comparison with related metal ions like Ca 2+ , Zn 2+ or Cd 2+ . It is worth noting that the affinity of Pb 2+ towards phosphate residues corresponds to that of Cu 2+ . Furthermore, the binding tendency of Pb 2+ towards thiophosphate groups as present in methyl thiophosphate (MeOPS 2− ) or uridine 5′- O -thiomonophosphate (UMPS 2− ) is compared with that of the parent ligands, that is, methyl phosphate (CH 3 OPO 3 2− ) and uridine 5′-monophosphate (UMP 2− ). The replacement of an O by a S atom makes the monoprotonated thiophosphate group considerably more acidic [compared to ROP(O) 2 − (OH)], but at the same time its affinity for Pb 2+ increases tremendously: more than 99% of Pb 2+ is S-bound. This is very different if the coordinating properties of uridylyl-(5′→3′)-[5′]-uridylate (pUpU 3− ) and P -thiouridylyl-(5′→3′)-[5′]-uridylate (pUp (S) U 3− ) are compared. The phosphate-coordinated Pb 2+ forms a 10-membered chelate with one of the two terminal O atoms of the phosphodiester linkage, which reaches a formation degree of about 90% in Pb(pUpU) − . However, in Pb(pUp (S) U) − the formation degree of the chelate is reduced to about half in accordance with the fact that now only one terminal O atom is available in the thiophosphate diester bridge, that is, Pb 2+ coordinates to this O showing no affinity for S in ROP(O)(S) − OR′. These observations are ascribed to the properties of the Pb 2+ lone pair, which shapes the Pb 2+ coordination sphere; its role is discussed further in this Perspective and a caveat is made regarding Pb 2+ binding to a thiophosphate diester linkage

    Metal ion-N7 coordination in a ribozyme branch domain by NMR

    Full text link
    The N7 of purine nucleotides presents one of the most dominant metal ion binding sites in nucleic acids. However, the interactions between kinetically labile metal ions like Mg2+ and these nitrogen atoms are inherently difficult to observe in large RNAs. Rather than using the insensitive direct N-15 detection, here we have used (2)J-H-1,N-15]-HSQC (Heteronuclear Single Quantum Coherence) NMR experiments as a fast and efficient method to specifically observe and characterize such interactions within larger RNA constructs. Using the 27 nucleotides long branch domain of the yeast-mitochondrial group II intron ribozyme Sc.ai5 gamma as an example, we show that direct N7 coordination of a Mg2+ ion takes place in a tetraloop nucleotide. A second Mg2+ ion, located in the major groove at the catalytic branch site, coordinates mainly in an outer-sphere fashion to the highly conserved flanking GU wobble pairs but not to N7 of the sandwiched branch adenosine. (C) 2010 Elsevier Inc. All rights reserved

    NMR Spectroscopy in Bioinorganic Chemistry

    Get PDF
    Multinuclear and multidimensional nuclear magnetic resonance (NMR) spectroscopy is applied in our groups to gain insights into the role of metal ions for the function and structure of large biomolecules. Specifically, NMR is used i) to investigate how metal ions bind to nucleic acids and thereby control the folding and structure of RNAs, ii) to characterize how metal ions are able to stabilize modified nucleic acids to be used as potential nanowires, and iii) to characterize the formation, structure, and role of the diverse metal clusters within plant metallothioneins. In this review we summarize the various NMR experiments applied and the information obtained, demonstrating the important and fascinating part NMR spectroscopy plays in the field of bioinorganic chemistry

    The structural features of the ligand-free moaA riboswitch and its ion-dependent folding

    Full text link
    Riboswitches are structural elements of mRNA involved in the regulation of gene expression by responding to specific cellular metabolites. To fulfil their regulatory function, riboswitches prefold into an active state, the so-called binding competent form, that guarantees metabolite binding and allows a consecutive refolding of the RNA. Here, we describe the folding pathway to the binding competent form as well as the ligand free structure of the moaA riboswitch of E. coli. This RNA proposedly responds to the molybdenum cofactor (Moco), a highly oxygen-sensitive metabolite, essential in the carbon and sulfur cycles of eukaryotes. K+- and Mg2+-dependent footprinting assays and spectroscopic investigations show a high degree of structure formation of this RNA already at very low ion-concentrations. Mg2+ facilitates additionally a general compaction of the riboswitch towards its proposed active structure. We show that this fold agrees with the earlier suggested secondary structure which included also a long-range tetraloop/tetraloop-receptor like interaction. Metal ion cleavage assays revealed specific Mg2+-binding pockets within the moaA riboswitch. These Mg2+ binding pockets are good indicators for the potential Moco binding site, since in riboswitches, Mg2+ was shown to be necessary to bind phosphate-carrying metabolites. The importance of the phosphate and of other functional groups of Moco is highlighted by binding assays with tetrahydrobiopterin, the reduced and oxygen-sensitive core moiety of Moco. We demonstrate that the general molecular shape of pterin by its own is insufficient for the recognition by the riboswitch
    corecore